Learning with Caffe in Python





在这个例子中,我们开始尝试通过Python调用Solver接口来训练一个网络。

环境设置

1
2
from pylab import *
%matplotlib inline
1
2
3
4
5
caffe_root = '/home/ldy/workspace/caffe/'  # this file should be run from {caffe_root}/examples (otherwise change this line)

import sys
sys.path.insert(0, caffe_root + 'python')
import caffe
  • 下载训练用的数据,并导入lmdb
1
2
3
4
5
6
7
8
9
# run scripts from caffe root
import os
os.chdir(caffe_root)
# Download data
!data/mnist/get_mnist.sh
# Prepare data
!examples/mnist/create_mnist.sh
# back to examples
os.chdir('examples')
Downloading...
Creating lmdb...
I0505 20:49:32.535013 18388 db_lmdb.cpp:35] Opened lmdb examples/mnist/mnist_train_lmdb
I0505 20:49:32.535306 18388 convert_mnist_data.cpp:88] A total of 60000 items.
I0505 20:49:32.535323 18388 convert_mnist_data.cpp:89] Rows: 28 Cols: 28
I0505 20:49:32.547651 18388 db_lmdb.cpp:101] Doubling LMDB map size to 2MB ...
I0505 20:49:32.556696 18388 db_lmdb.cpp:101] Doubling LMDB map size to 4MB ...
I0505 20:49:32.578054 18388 db_lmdb.cpp:101] Doubling LMDB map size to 8MB ...
I0505 20:49:32.627709 18388 db_lmdb.cpp:101] Doubling LMDB map size to 16MB ...
I0505 20:49:32.718138 18388 db_lmdb.cpp:101] Doubling LMDB map size to 32MB ...
I0505 20:49:32.960189 18388 db_lmdb.cpp:101] Doubling LMDB map size to 64MB ...
I0505 20:49:33.271764 18388 convert_mnist_data.cpp:108] Processed 60000 files.
I0505 20:49:33.403015 18390 db_lmdb.cpp:35] Opened lmdb examples/mnist/mnist_test_lmdb
I0505 20:49:33.403692 18390 convert_mnist_data.cpp:88] A total of 10000 items.
I0505 20:49:33.403733 18390 convert_mnist_data.cpp:89] Rows: 28 Cols: 28
I0505 20:49:33.423638 18390 db_lmdb.cpp:101] Doubling LMDB map size to 2MB ...
I0505 20:49:33.439213 18390 db_lmdb.cpp:101] Doubling LMDB map size to 4MB ...
I0505 20:49:33.470553 18390 db_lmdb.cpp:101] Doubling LMDB map size to 8MB ...
I0505 20:49:33.525192 18390 db_lmdb.cpp:101] Doubling LMDB map size to 16MB ...
I0505 20:49:33.546480 18390 convert_mnist_data.cpp:108] Processed 10000 files.
Done.

搭建网络

搭建网络结构,并保存为lenet_auto_train.prototxt(训练网络),lenet_auto_test.prototxt(测试网络)。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
from caffe import layers as L, params as P

def lenet(lmdb, batch_size):
# our version of LeNet: a series of linear and simple nonlinear transformations
n = caffe.NetSpec()

n.data, n.label = L.Data(batch_size=batch_size, backend=P.Data.LMDB, source=lmdb,
transform_param=dict(scale=1./255), ntop=2)

n.conv1 = L.Convolution(n.data, kernel_size=5, num_output=20, weight_filler=dict(type='xavier'))
n.pool1 = L.Pooling(n.conv1, kernel_size=2, stride=2, pool=P.Pooling.MAX)
n.conv2 = L.Convolution(n.pool1, kernel_size=5, num_output=50, weight_filler=dict(type='xavier'))
n.pool2 = L.Pooling(n.conv2, kernel_size=2, stride=2, pool=P.Pooling.MAX)
n.fc1 = L.InnerProduct(n.pool2, num_output=500, weight_filler=dict(type='xavier'))
n.relu1 = L.ReLU(n.fc1, in_place=True)
n.score = L.InnerProduct(n.relu1, num_output=10, weight_filler=dict(type='xavier'))
n.loss = L.SoftmaxWithLoss(n.score, n.label)

return n.to_proto()

with open('mnist/lenet_auto_train.prototxt', 'w') as f:
f.write(str(lenet('mnist/mnist_train_lmdb', 64)))

with open('mnist/lenet_auto_test.prototxt', 'w') as f:
f.write(str(lenet('mnist/mnist_test_lmdb', 100)))

查看训练网络结构:

1
!cat mnist/lenet_auto_train.prototxt
layer {
  name: "data"
  type: "Data"
  top: "data"
  top: "label"
  transform_param {
    scale: 0.00392156862745
  }
  data_param {
    source: "mnist/mnist_train_lmdb"
    batch_size: 64
    backend: LMDB
  }
}
layer {
  name: "conv1"
  type: "Convolution"
  bottom: "data"
  top: "conv1"
  convolution_param {
    num_output: 20
    kernel_size: 5
    weight_filler {
      type: "xavier"
    }
  }
}
layer {
  name: "pool1"
  type: "Pooling"
  bottom: "conv1"
  top: "pool1"
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}
layer {
  name: "conv2"
  type: "Convolution"
  bottom: "pool1"
  top: "conv2"
  convolution_param {
    num_output: 50
    kernel_size: 5
    weight_filler {
      type: "xavier"
    }
  }
}
layer {
  name: "pool2"
  type: "Pooling"
  bottom: "conv2"
  top: "pool2"
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}
layer {
  name: "fc1"
  type: "InnerProduct"
  bottom: "pool2"
  top: "fc1"
  inner_product_param {
    num_output: 500
    weight_filler {
      type: "xavier"
    }
  }
}
layer {
  name: "relu1"
  type: "ReLU"
  bottom: "fc1"
  top: "fc1"
}
layer {
  name: "score"
  type: "InnerProduct"
  bottom: "fc1"
  top: "score"
  inner_product_param {
    num_output: 10
    weight_filler {
      type: "xavier"
    }
  }
}
layer {
  name: "loss"
  type: "SoftmaxWithLoss"
  bottom: "score"
  bottom: "label"
  top: "loss"
}

查看学习参数,参数文件已经保存在本地磁盘:

1
!cat mnist/lenet_auto_solver.prototxt
# The train/test net protocol buffer definition
train_net: "mnist/lenet_auto_train.prototxt"
test_net: "mnist/lenet_auto_test.prototxt"
# test_iter specifies how many forward passes the test should carry out.
# In the case of MNIST, we have test batch size 100 and 100 test iterations,
# covering the full 10,000 testing images.
test_iter: 100
# Carry out testing every 500 training iterations.
test_interval: 500
# The base learning rate, momentum and the weight decay of the network.
base_lr: 0.01
momentum: 0.9
weight_decay: 0.0005
# The learning rate policy
lr_policy: "inv"
gamma: 0.0001
power: 0.75
# Display every 100 iterations
display: 100
# The maximum number of iterations
max_iter: 10000
# snapshot intermediate results
snapshot: 5000
snapshot_prefix: "mnist/lenet"

加载并检查solver

1
2
3
4
5
6
caffe.set_device(0)
caffe.set_mode_gpu()

### load the solver and create train and test nets
solver = None # ignore this workaround for lmdb data (can't instantiate two solvers on the same data)
solver = caffe.SGDSolver('mnist/lenet_auto_solver.prototxt')
  • 检查网络参数
1
2
# each output is (batch size, feature dim, spatial dim)
[(k, v.data.shape) for k, v in solver.net.blobs.items()]
[('data', (64, 1, 28, 28)),
 ('label', (64,)),
 ('conv1', (64, 20, 24, 24)),
 ('pool1', (64, 20, 12, 12)),
 ('conv2', (64, 50, 8, 8)),
 ('pool2', (64, 50, 4, 4)),
 ('fc1', (64, 500)),
 ('score', (64, 10)),
 ('loss', ())]
1
2
# just print the weight sizes (we'll omit the biases)
[(k, v[0].data.shape) for k, v in solver.net.params.items()]
[('conv1', (20, 1, 5, 5)),
 ('conv2', (50, 20, 5, 5)),
 ('fc1', (500, 800)),
 ('score', (10, 500))]
  • 在开始前,我们先检查下训练网络和测试网络是否包含我们的数据
1
2
solver.net.forward()  # train net
solver.test_nets[0].forward() # test net (there can be more than one)
{'loss': array(2.3089799880981445, dtype=float32)}
1
2
3
# we use a little trick to tile the first eight images
imshow(solver.net.blobs['data'].data[:8, 0].transpose(1, 0, 2).reshape(28, 8*28), cmap='gray'); axis('off')
print 'train labels:', solver.net.blobs['label'].data[:8]
train labels: [ 5.  0.  4.  1.  9.  2.  1.  3.]

1
2
imshow(solver.test_nets[0].blobs['data'].data[:8, 0].transpose(1, 0, 2).reshape(28, 8*28), cmap='gray'); axis('off')
print 'test labels:', solver.test_nets[0].blobs['label'].data[:8]
test labels: [ 7.  2.  1.  0.  4.  1.  4.  9.]

开始训练

  • 先训练一个batch看会有什么结果
1
solver.step(1)

运行一次之后,看看我们的第一层卷积层的滤波器是否有变化,20个滤波器如下所示:

1
2
imshow(solver.net.params['conv1'][0].diff[:, 0].reshape(4, 5, 5, 5)
.transpose(0, 2, 1, 3).reshape(4*5, 5*5), cmap='gray'); axis('off')
(-0.5, 24.5, 19.5, -0.5)

上面说明权重已经更新,我们可以在迭代训练的时候,记录一些参数,决定什么时候停止迭代

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
%%time
niter = 200
test_interval = 25
# losses will also be stored in the log
train_loss = zeros(niter)
test_acc = zeros(int(np.ceil(niter / test_interval)))
output = zeros((niter, 8, 10))

# the main solver loop
for it in range(niter):
solver.step(1) # SGD by Caffe

# store the train loss
train_loss[it] = solver.net.blobs['loss'].data

# store the output on the first test batch
# (start the forward pass at conv1 to avoid loading new data)
solver.test_nets[0].forward(start='conv1')
output[it] = solver.test_nets[0].blobs['score'].data[:8]

# run a full test every so often
# (Caffe can also do this for us and write to a log, but we show here
# how to do it directly in Python, where more complicated things are easier.)
if it % test_interval == 0:
print 'Iteration', it, 'testing...'
correct = 0
for test_it in range(100):
solver.test_nets[0].forward()
correct += sum(solver.test_nets[0].blobs['score'].data.argmax(1)
== solver.test_nets[0].blobs['label'].data)
test_acc[it // test_interval] = correct / 1e4
Iteration 0 testing...
Iteration 25 testing...
Iteration 50 testing...
Iteration 75 testing...
Iteration 100 testing...
Iteration 125 testing...
Iteration 150 testing...
Iteration 175 testing...
CPU times: user 1min 15s, sys: 15.3 s, total: 1min 31s
Wall time: 1min 18s
  • 画出train loss和test accuracy
1
2
3
4
5
6
7
8
_, ax1 = subplots()
ax2 = ax1.twinx()
ax1.plot(arange(niter), train_loss)
ax2.plot(test_interval * arange(len(test_acc)), test_acc, 'r')
ax1.set_xlabel('iteration')
ax1.set_ylabel('train loss')
ax2.set_ylabel('test accuracy')
ax2.set_title('Test Accuracy: {:.2f}'.format(test_acc[-1]))
<matplotlib.text.Text at 0x7feabeae91d0>

  • 因为我们保存第一次测试batch的结果,所以可以看看每次迭代结果的变化,下面画出每个图像随迭代次数每个标签的可能性。(只显示了一个数字,其他的数字类似)
1
2
3
4
5
6
7
for i in range(8):
figure(figsize=(2, 2))
imshow(solver.test_nets[0].blobs['data'].data[i, 0], cmap='gray')
figure(figsize=(10, 2))
imshow(output[:50, i].T, interpolation='nearest', cmap='gray')
xlabel('iteration')
ylabel('label')

尝试改变网络结构和优化函数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
train_net_path = 'mnist/custom_auto_train.prototxt'
test_net_path = 'mnist/custom_auto_test.prototxt'
solver_config_path = 'mnist/custom_auto_solver.prototxt'

### define net
def custom_net(lmdb, batch_size):
# define your own net!
n = caffe.NetSpec()

# keep this data layer for all networks
n.data, n.label = L.Data(batch_size=batch_size, backend=P.Data.LMDB, source=lmdb,
transform_param=dict(scale=1./255), ntop=2)

# EDIT HERE to try different networks
# this single layer defines a simple linear classifier
# (in particular this defines a multiway logistic regression)
n.score = L.InnerProduct(n.data, num_output=10, weight_filler=dict(type='xavier'))

# EDIT HERE this is the LeNet variant we have already tried
# n.conv1 = L.Convolution(n.data, kernel_size=5, num_output=20, weight_filler=dict(type='xavier'))
# n.pool1 = L.Pooling(n.conv1, kernel_size=2, stride=2, pool=P.Pooling.MAX)
# n.conv2 = L.Convolution(n.pool1, kernel_size=5, num_output=50, weight_filler=dict(type='xavier'))
# n.pool2 = L.Pooling(n.conv2, kernel_size=2, stride=2, pool=P.Pooling.MAX)
# n.fc1 = L.InnerProduct(n.pool2, num_output=500, weight_filler=dict(type='xavier'))
# EDIT HERE consider L.ELU or L.Sigmoid for the nonlinearity
# n.relu1 = L.ReLU(n.fc1, in_place=True)
# n.score = L.InnerProduct(n.fc1, num_output=10, weight_filler=dict(type='xavier'))

# keep this loss layer for all networks
n.loss = L.SoftmaxWithLoss(n.score, n.label)

return n.to_proto()

with open(train_net_path, 'w') as f:
f.write(str(custom_net('mnist/mnist_train_lmdb', 64)))
with open(test_net_path, 'w') as f:
f.write(str(custom_net('mnist/mnist_test_lmdb', 100)))

### define solver
from caffe.proto import caffe_pb2
s = caffe_pb2.SolverParameter()

# Set a seed for reproducible experiments:
# this controls for randomization in training.
s.random_seed = 0xCAFFE

# Specify locations of the train and (maybe) test networks.
s.train_net = train_net_path
s.test_net.append(test_net_path)
s.test_interval = 500 # Test after every 500 training iterations.
s.test_iter.append(100) # Test on 100 batches each time we test.

s.max_iter = 10000 # no. of times to update the net (training iterations)

# EDIT HERE to try different solvers
# solver types include "SGD", "Adam", and "Nesterov" among others.
s.type = "SGD"

# Set the initial learning rate for SGD.
s.base_lr = 0.01 # EDIT HERE to try different learning rates
# Set momentum to accelerate learning by
# taking weighted average of current and previous updates.
s.momentum = 0.9
# Set weight decay to regularize and prevent overfitting
s.weight_decay = 5e-4

# Set `lr_policy` to define how the learning rate changes during training.
# This is the same policy as our default LeNet.
s.lr_policy = 'inv'
s.gamma = 0.0001
s.power = 0.75
# EDIT HERE to try the fixed rate (and compare with adaptive solvers)
# `fixed` is the simplest policy that keeps the learning rate constant.
# s.lr_policy = 'fixed'

# Display the current training loss and accuracy every 1000 iterations.
s.display = 1000

# Snapshots are files used to store networks we've trained.
# We'll snapshot every 5K iterations -- twice during training.
s.snapshot = 5000
s.snapshot_prefix = 'mnist/custom_net'

# Train on the GPU
s.solver_mode = caffe_pb2.SolverParameter.GPU

# Write the solver to a temporary file and return its filename.
with open(solver_config_path, 'w') as f:
f.write(str(s))

### load the solver and create train and test nets
solver = None # ignore this workaround for lmdb data (can't instantiate two solvers on the same data)
solver = caffe.get_solver(solver_config_path)

### solve
niter = 250 # EDIT HERE increase to train for longer
test_interval = niter / 10
# losses will also be stored in the log
train_loss = zeros(niter)
test_acc = zeros(int(np.ceil(niter / test_interval)))

# the main solver loop
for it in range(niter):
solver.step(1) # SGD by Caffe

# store the train loss
train_loss[it] = solver.net.blobs['loss'].data

# run a full test every so often
# (Caffe can also do this for us and write to a log, but we show here
# how to do it directly in Python, where more complicated things are easier.)
if it % test_interval == 0:
print 'Iteration', it, 'testing...'
correct = 0
for test_it in range(100):
solver.test_nets[0].forward()
correct += sum(solver.test_nets[0].blobs['score'].data.argmax(1)
== solver.test_nets[0].blobs['label'].data)
test_acc[it // test_interval] = correct / 1e4

_, ax1 = subplots()
ax2 = ax1.twinx()
ax1.plot(arange(niter), train_loss)
ax2.plot(test_interval * arange(len(test_acc)), test_acc, 'r')
ax1.set_xlabel('iteration')
ax1.set_ylabel('train loss')
ax2.set_ylabel('test accuracy')
ax2.set_title('Custom Test Accuracy: {:.2f}'.format(test_acc[-1]))

参考

Solving in Python with LeNet